Friday 10 November 2017

Moving Average In Time Serie Analyse


Bewegungsdurchschnitte Bewegungsdurchschnitte Bei herkömmlichen Datensätzen ist der Mittelwert oft der erste und eine der nützlichsten Zusammenfassungsstatistiken zu berechnen. Wenn Daten in Form einer Zeitreihe vorliegen, ist das Serienmittel ein nützliches Maß, entspricht aber nicht der Dynamik der Daten. Mittelwerte, die über kurzgeschlossene Perioden berechnet werden, die entweder der aktuellen Periode vorausgeht oder auf der aktuellen Periode zentriert sind, sind oft nützlicher. Weil diese Mittelwerte variieren oder sich bewegen, wenn sich die aktuelle Periode von der Zeit t 2, t 3 usw. bewegt, werden sie als gleitende Mittelwerte (Mas) bezeichnet. Ein einfacher gleitender Durchschnitt ist (typischerweise) der ungewichtete Durchschnitt von k vorherigen Werten. Ein exponentiell gewichteter gleitender Durchschnitt ist im wesentlichen derselbe wie ein einfacher gleitender Durchschnitt, aber mit Beiträgen zum Mittelwert, der durch ihre Nähe zur aktuellen Zeit gewichtet wird. Weil es nicht eine, sondern eine ganze Reihe von gleitenden Durchschnitten für jede gegebene Serie gibt, kann der Satz von Mas selbst auf Graphen aufgetragen, als Serie analysiert und bei der Modellierung und Prognose verwendet werden. Eine Reihe von Modellen kann mit gleitenden Durchschnitten konstruiert werden, und diese sind als MA-Modelle bekannt. Wenn solche Modelle mit autoregressiven (AR) Modellen kombiniert werden, sind die resultierenden zusammengesetzten Modelle als ARMA - oder ARIMA-Modelle bekannt (die I ist für integriert). Einfache Bewegungsdurchschnitte Da eine Zeitreihe als ein Satz von Werten betrachtet werden kann, kann t 1,2,3,4, n der Mittelwert dieser Werte berechnet werden. Wenn wir annehmen, daß n ziemlich groß ist und wir eine ganze Zahl k wählen, die viel kleiner als n ist. Wir können einen Satz von Blockdurchschnitten oder einfache gleitende Mittelwerte (der Ordnung k) berechnen: Jede Maßnahme repräsentiert den Mittelwert der Datenwerte über ein Intervall von k Beobachtungen. Beachten Sie, dass die erste mögliche MA der Ordnung k gt0 die für t k ist. Im Allgemeinen können wir den zusätzlichen Index in den obigen Ausdrücken fallen lassen und schreiben: Dies besagt, dass der geschätzte Mittelwert zum Zeitpunkt t der einfache Durchschnitt des beobachteten Wertes zum Zeitpunkt t und der vorhergehenden k -1 Zeitschritte ist. Wenn Gewichte angewendet werden, die den Beitrag von Beobachtungen, die weiter weg in der Zeit sind, verringern, wird der gleitende Durchschnitt exponentiell geglättet. Bewegliche Mittelwerte werden oft als eine Form der Prognose verwendet, wobei der Schätzwert für eine Reihe zum Zeitpunkt t 1, S t1. Wird als MA für den Zeitraum bis einschließlich Zeit t genommen. z. B. Die heutige Schätzung basiert auf einem Durchschnitt der bisher aufgezeichneten Werte bis einschließlich gestern (für Tagesdaten). Einfache gleitende Durchschnitte können als eine Form der Glättung gesehen werden. In dem unten dargestellten Beispiel wurde der in der Einleitung zu diesem Thema gezeigte Luftverschmutzungs-Datensatz um eine 7-Tage-Gleitende Durchschnitt (MA) - Linie erweitert, die hier in rot dargestellt ist. Wie man sehen kann, glättet die MA-Linie die Gipfel und Tröge in den Daten und kann sehr hilfreich bei der Identifizierung von Trends sein. Die Standard-Vorwärtsberechnungsformel bedeutet, dass die ersten k -1 Datenpunkte keinen MA-Wert haben, aber danach rechnen die Berechnungen bis zum endgültigen Datenpunkt in der Serie. PM10 tägliche Mittelwerte, Greenwich Quelle: London Air Quality Network, londonair. org. uk Ein Grund für die Berechnung einfacher gleitender Durchschnitte in der beschriebenen Weise ist, dass es ermöglicht, Werte für alle Zeitschlitze von der Zeit tk bis zur Gegenwart berechnet werden, und Da eine neue Messung für die Zeit t 1 erhalten wird, kann die MA für die Zeit t 1 dem bereits berechneten Satz hinzugefügt werden. Dies stellt eine einfache Prozedur für dynamische Datensätze zur Verfügung. Allerdings gibt es einige Probleme mit diesem Ansatz. Es ist vernünftig zu argumentieren, dass der Mittelwert über die letzten 3 Perioden, sagen wir, zum Zeitpunkt t -1 liegen sollte, nicht Zeit t. Und für eine MA über eine gerade Anzahl von Perioden vielleicht sollte es sich am Mittelpunkt zwischen zwei Zeitintervallen befinden. Eine Lösung für dieses Problem ist die Verwendung von zentrierten MA-Berechnungen, bei denen das MA zum Zeitpunkt t der Mittelwert eines symmetrischen Satzes von Werten um t ist. Trotz seiner offensichtlichen Verdienste wird dieser Ansatz im Allgemeinen nicht verwendet, weil es erfordert, dass Daten für zukünftige Ereignisse verfügbar sind, was möglicherweise nicht der Fall ist. In Fällen, in denen die Analyse vollständig aus einer bestehenden Serie besteht, kann die Verwendung von zentriertem Mas vorzuziehen sein. Einfache gleitende Durchschnitte können als eine Form der Glättung betrachtet werden, wobei einige hochfrequente Komponenten einer Zeitreihe entfernt werden und die Trends in ähnlicher Weise wie der allgemeine Begriff der digitalen Filterung hervorgehoben werden (aber nicht entfernen) werden. In der Tat sind gleitende Mittelwerte eine Form des linearen Filters. Es ist möglich, eine gleitende Durchschnittsberechnung auf eine Reihe anzuwenden, die bereits geglättet worden ist, d. h. Glätten oder Filtern einer bereits geglätteten Reihe. Zum Beispiel können wir mit einem gleitenden Durchschnitt von Ordnung 2, wie sie mit Gewichten berechnet werden, also die MA bei x 2 0,5 x 1 0,5 x 2 betrachten. Ebenso ist die MA bei x 3 0,5 x 2 0,5 x 3. Wenn wir Eine zweite Glättung oder Filterung anwenden, haben wir 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 dh die zweistufige Filterung Prozess (oder Faltung) hat einen variabel gewichteten symmetrischen gleitenden Durchschnitt mit Gewichten erzeugt. Mehrere Windungen können sehr komplexe gewichtete Bewegungsdurchschnitte erzeugen, von denen einige von besonderem Gebrauch in spezialisierten Bereichen, wie in Lebensversicherungsberechnungen, gefunden wurden. Bewegliche Mittelwerte können verwendet werden, um periodische Effekte zu entfernen, wenn sie mit der Länge der Periodizität als bekannt berechnet werden. Zum Beispiel, mit monatlichen Daten saisonale Variationen können oft entfernt werden (wenn dies das Ziel ist), indem Sie einen symmetrischen 12-Monats-gleitenden Durchschnitt mit allen Monaten gleich gewichtet, mit Ausnahme der ersten und letzten, die mit 12 gewichtet werden. Dies ist, weil es wird 13 Monate im symmetrischen Modell (aktuelle Zeit, t. - 6 Monate). Die Summe wird durch 12 geteilt. Ähnliche Verfahren können für jede klar definierte Periodizität angenommen werden. Exponentiell gewichtete Bewegungsdurchschnitte (EWMA) Mit der einfachen gleitenden Durchschnittsformel: Alle Beobachtungen werden gleich gewichtet. Wenn wir diese gleichen Gewichte nennen, alpha t. Jedes der k Gewichte würde 1 k betragen. So wäre die Summe der Gewichte 1, und die Formel wäre: Wir haben bereits gesehen, dass mehrere Anwendungen dieses Prozesses dazu führen, dass die Gewichte variieren. Bei exponentiell gewichteten Bewegungsdurchschnitten wird der Beitrag zum Mittelwert aus Beobachtungen, die in der Zeit mehr entfernt werden, reduziert und damit neue (lokale) Ereignisse hervorgehoben. Im wesentlichen wird ein Glättungsparameter, 0lt alpha lt1, eingeführt und die Formel überarbeitet: Eine symmetrische Version dieser Formel wäre von der Form: Werden die Gewichte im symmetrischen Modell als Begriffe der Binomialexpansion ausgewählt, (1212) 2q. Sie werden auf 1 summieren, und wenn q groß wird, wird die Normalverteilung angenähert. Dies ist eine Form der Kernel-Gewichtung, wobei die Binomie als Kernfunktion fungiert. Die im vorigen Unterabschnitt beschriebene zweistufige Faltung ist genau diese Anordnung, wobei q 1 die Gewichte ergibt. Bei der exponentiellen Glättung ist es notwendig, einen Satz von Gewichten zu verwenden, die auf 1 summieren und die Größe geometrisch verkleinern. Die verwendeten Gewichte sind typischerweise in der Form: Um zu zeigen, dass diese Gewichte auf 1 summieren, betrachten wir die Ausdehnung von 1 als Reihe. Wir können den Ausdruck in Klammern mit der Binomialformel (1- x) p schreiben und erweitern. Wobei x (1-) und p -1, was ergibt: Dies ergibt dann eine Form des gewichteten gleitenden Durchschnitts der Form: Diese Summation kann als eine Wiederholungsrelation geschrieben werden, die die Berechnung stark vereinfacht und das Problem vermeidet, dass das Gewichtungsregime Sollte strikt unendlich sein, damit die Gewichte auf 1 summieren (für kleine Werte von alpha ist dies normalerweise nicht der Fall). Die Notation, die von verschiedenen Autoren verwendet wird, variiert. Manche verwenden den Buchstaben S, um anzuzeigen, daß die Formel im wesentlichen eine geglättete Variable ist und schreibt: Während die Kontrolle Theorie Literatur oft Z anstelle von S für die exponentiell gewichteten oder geglätteten Werte verwendet (siehe z. B. Lucas und Saccucci, 1990, LUC1 , Und die NIST-Website für weitere Details und bearbeitete Beispiele). Die oben zitierten Formeln stammen aus der Arbeit von Roberts (1959, ROB1), aber Hunter (1986, HUN1) verwendet einen Ausdruck der Form: die für die Verwendung in einigen Kontrollverfahren besser geeignet ist. Bei alpha 1 ist die mittlere Schätzung einfach der gemessene Wert (oder der Wert des vorherigen Datenelementes). Mit 0,5 ist die Schätzung der einfache gleitende Durchschnitt der aktuellen und früheren Messungen. Bei der Vorhersage der Modelle ist der Wert S t. Wird oft als Schätz - oder Prognosewert für den nächsten Zeitraum verwendet, dh als Schätzung für x zum Zeitpunkt t 1. Damit haben wir: Dies zeigt, dass der Prognosewert zum Zeitpunkt t 1 eine Kombination aus dem vorherigen exponentiell gewichteten gleitenden Durchschnitt ist Plus eine Komponente, die den gewichteten Vorhersagefehler darstellt, epsilon. Zum Zeitpunkt t. Unter der Annahme, dass eine Zeitreihe gegeben ist und eine Prognose erforderlich ist, ist ein Wert für Alpha erforderlich. Dies kann aus den vorhandenen Daten abgeschätzt werden, indem die Summe der quadratischen Vorhersagefehler mit variierenden Werten von alpha für jedes t 2,3 ausgewertet wird. Einstellung der ersten Schätzung als der erste beobachtete Datenwert x 1. Bei den Steuerungsanwendungen ist der Wert von alpha wichtig, der bei der Bestimmung der oberen und unteren Kontrollgrenzen verwendet wird und die erwartete durchschnittliche Lauflänge (ARL) beeinflusst Bevor diese Kontrollgrenzen kaputt sind (unter der Annahme, dass die Zeitreihe einen Satz von zufälligen, identisch verteilten unabhängigen Variablen mit gemeinsamer Varianz darstellt). Unter diesen Umständen ist die Varianz der Kontrollstatistik: (Lucas und Saccucci, 1990): Kontrollgrenzen werden gewöhnlich als feste Vielfache dieser asymptotischen Varianz gesetzt, z. B. - 3 mal die Standardabweichung. Wenn beispielsweise Alpha 0,25 und die zu überwachenden Daten eine Normalverteilung N (0,1) haben, wenn die Kontrolle begrenzt wird, werden die Regelgrenzen - 1.134 sein und der Prozeß erreicht eine oder andere Grenze in 500 Schritten im Durchschnitt. Lucas und Saccucci (1990 LUC1) leiten die ARLs für eine breite Palette von Alpha-Werten und unter verschiedenen Annahmen mit Markov Chain Verfahren ab. Sie tabellieren die Ergebnisse, einschließlich der Bereitstellung von ARLs, wenn der Mittelwert des Kontrollprozesses um ein Vielfaches der Standardabweichung verschoben wurde. Zum Beispiel ist bei einer 0,5-Schicht mit alpha 0,25 die ARL weniger als 50 Zeitschritte. Die oben beschriebenen Ansätze werden als einzelne exponentielle Glättung bezeichnet. Da die Prozeduren einmal auf die Zeitreihen angewendet werden und dann analysiert oder kontrolliert werden, werden Prozesse auf dem resultierenden geglätteten Datensatz durchgeführt. Wenn der Datensatz einen Trend und saisonale Komponenten enthält, kann eine zweidimensionale oder dreistufige Exponentialglättung als Mittel zur Beseitigung (expliziten Modellierung) dieser Effekte angewendet werden (siehe weiter unten den Abschnitt "Vorhersage" und das NIST-Beispiel). CHA1 Chatfield C (1975) Die Analyse der Times-Serie: Theorie und Praxis. Chapman und Hall, London HUN1 Hunter J S (1986) Der exponentiell gewichtete gleitende Durchschnitt. J von Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Exponentiell gewichtete Moving Average Control Schemes: Eigenschaften und Erweiterungen. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolltabelle Tests basierend auf geometrischen Moving Averages. Technometrics, 1, 239-250Smoothing Daten entfernt zufällige Variation und zeigt Trends und zyklische Komponenten Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Aufhebung der Wirkung durch zufällige Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik, wenn sie richtig angewendet wird, zeigt deutlich die zugrunde liegenden Tendenz, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mit den Mittelwerten ist der einfachste Weg, um Daten zu glätten. Wir werden zunächst einige Mittelungsmethoden untersuchen, wie zB den einfachen Durchschnitt aller vergangenen Daten. Ein Manager eines Lagers will wissen, wie viel ein typischer Lieferant in 1000 Dollar Einheiten liefert. Heshe nimmt eine Stichprobe von 12 Lieferanten, zufällig, erhalten die folgenden Ergebnisse: Die berechneten Mittelwert oder Durchschnitt der Daten 10. Der Manager beschließt, dies als die Schätzung für den Aufwand eines typischen Lieferanten zu verwenden. Ist das eine gute oder schlechte Schätzung Mittlerer quadratischer Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist. Wir werden den mittleren quadratischen Fehler berechnen. Der fehlerhafte Betrag verbrachte abzüglich des geschätzten Betrags. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittlich wiegt alle vergangenen Beobachtungen gleich Zusammenfassend heißt es, dass der einfache Durchschnitt oder Mittel aller vergangenen Beobachtungen nur eine nützliche Schätzung für die Prognose ist, wenn es keine Trends gibt. Wenn es Trends gibt, verwenden Sie unterschiedliche Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle vergangenen Beobachtungen gleichermaßen. Zum Beispiel ist der Mittelwert der Werte 3, 4, 5 gleich 4. Wir wissen natürlich, daß ein Mittelwert durch Addition aller Werte berechnet und die Summe durch die Anzahl der Werte dividiert wird. Eine weitere Möglichkeit, den Mittelwert zu berechnen, besteht darin, jeden Wert durch die Anzahl der Werte zu addieren, oder 33 43 53 1 1.3333 1.6667 4. Der Multiplikator 13 heißt das Gewicht. Im Allgemeinen: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. , Links (frac rechts) xn. Die (linke (frac rechts)) sind die Gewichte und natürlich summieren sie sich auf 1.2.1 Moving Average Models (MA Modelle) Zeitreihenmodelle, die als ARIMA Modelle bekannt sind, können autoregressive Begriffe und bewegte durchschnittliche Begriffe enthalten. In Woche 1 lernten wir einen autoregressiven Begriff in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Zum Beispiel ist ein lag 1 autoregressiver Term x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende durchschnittliche Begriffe. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Lassen Sie (nt N (0, sigma2w)), was bedeutet, dass die wt identisch, unabhängig verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das mit MA (1) bezeichnete 1-stufige gleitende Durchschnittsmodell ist (xt mu wt theta1w) Das durchschnittliche Modell der 2. Ordnung, das mit MA (2) bezeichnet wird, ist (xt mu wt theta1w theta2w) , Bezeichnet mit MA (q) ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Bedingungen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (unsquared) Terme in Formeln für ACFs und Abweichungen klappt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Zeichen verwendet wurden, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Zeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Beispiel ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) Modell. Für interessierte Schüler sind die Beweise dieser Eigenschaften ein Anhang zu diesem Handzettel. Beispiel 1 Angenommen, ein MA (1) - Modell ist x t 10 wt .7 w t-1. Wo (wt Overset N (0,1)). So ist der Koeffizient 1 0,7. Die theoretische ACF ist gegeben durch eine Handlung dieses ACF folgt. Die gerade dargestellte Handlung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis wird eine Probe gewöhnlich ein solches klares Muster liefern. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1). Für diese Simulation folgt eine Zeitreihenfolge der Stichprobendaten. Wir können nicht viel von dieser Handlung erzählen. Die Stichprobe ACF für die simulierten Daten folgt. Wir sehen eine Spike bei Verzögerung 1, gefolgt von allgemein nicht signifikanten Werten für die Vergangenheit 1. Beachten Sie, dass die Stichprobe ACF nicht mit dem theoretischen Muster des zugrundeliegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sind Eine andere Probe hätte eine etwas andere Probe ACF, die unten gezeigt wird, würde aber wahrscheinlich die gleichen breiten Merkmale haben. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) Modell Für das MA (2) Modell sind die theoretischen Eigenschaften die folgenden: Beachten Sie, dass die einzigen Werte ungleich Null im theoretischen ACF für die Verzögerungen 1 und 2 sind. Autokorrelationen für höhere Verzögerungen sind 0 So gibt ein Beispiel ACF mit signifikanten Autokorrelationen bei den Verzögerungen 1 und 2, aber nicht signifikante Autokorrelationen für höhere Verzögerungen ein mögliches MA (2) - Modell an. Iid N (0,1). Die Koeffizienten sind 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, hat die theoretische ACF nur Nullwerte nur bei den Verzögerungen 1 und 2. Werte der beiden Nicht-Null-Autokorrelationen sind eine Auftragung der theoretischen ACF folgt. Wie fast immer der Fall ist, verhalten sich die Probendaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Probenwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wo w t iid N (0,1). Die Zeitreihenfolge der Daten folgt. Wie bei der Zeitreihen-Plot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Stichprobe ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei den Verzögerungen 1 und 2, gefolgt von nicht signifikanten Werten für andere Verzögerungen. Beachten Sie, dass die Stichprobe ACF aufgrund des Stichprobenfehlers nicht genau mit dem theoretischen Muster übereinstimmt. ACF für allgemeine MA (q) Modelle Eine Eigenschaft von MA (q) - Modellen im Allgemeinen ist, dass es für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q ungleichen Autokorrelationen gibt. Nicht-Eindeutigkeit der Verbindung zwischen den Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) Modell, für jeden Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0,5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll bekommen (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung zu erfüllen, die Invertierbarkeit genannt wird. Wir beschränken die MA (1) - Modelle auf Werte mit einem absoluten Wert kleiner als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, wohingegen 1 10,5 2 nicht. Invertierbarkeit von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch konvergieren, verstehen wir, dass die AR-Koeffizienten auf 0 abnehmen, wenn wir uns in der Zeit zurückziehen. Invertierbarkeit ist eine Beschränkung, die in die Zeitreihen-Software programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Terme abzuschätzen. Es ist nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertierbarkeitsbeschränkung für MA (1) Modelle finden Sie im Anhang. Fortgeschrittene Theorie Hinweis. Für ein MA (q) Modell mit einem bestimmten ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten Werte haben, so daß die Gleichung 1- 1 y - ist. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 haben wir die theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1 Und dann simuliert n 150 Werte aus diesem Modell und plotted die Probe Zeitreihen und die Probe ACF für die simulierten Daten. Die R-Befehle, die verwendet wurden, um das theoretische ACF zu zeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens Lags, die von 0 bis 10 reicht (1) mit theta1 0,7) abline (h0) fügt eine horizontale Achse zum Plot hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Benannte acfma1 (unsere auswahl des namens). Der Plotbefehl (der 3. Befehl) zeichnet sich gegen die ACF-Werte für die Verzögerungen 1 bis 10 aus. Der ylab-Parameter markiert die y-Achse und der Hauptparameter setzt einen Titel auf den Plot. Um die numerischen Werte des ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und die Plots wurden mit den folgenden Befehlen durchgeführt. Xcarima. sim (n150, list (mac (0.7))) simuliert n 150 Werte aus MA (1) xxc10 fügt 10 hinzu, um Mittel zu machen 10. Simulation standardmäßig 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurden die theoretischen ACF des Modells xt 10 Gew .-% w t-1 .3 w t-2 aufgetragen. Und dann simuliert n 150 Werte aus diesem Modell und plotted die Probe Zeitreihen und die Probe ACF für die simulierten Daten. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (Verzögerungen, acfma2, xlimc (1,10), ylabr, typeh, Haupt-ACF für MA (2) mit theta1 0,5, Thex20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, main simulierte MA (2) Serie) acf (x, xlimc (1,10), MainACF für simulierte MA (2) Daten) Anhang: Nachweis der Eigenschaften von MA (1) Für interessierte Studierende sind hier Beispiele für theoretische Eigenschaften des MA (1) Modells. Abweichung: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1, der vorherige Ausdruck 1 w 2. Für irgendwelche h 2 ist der vorherige Ausdruck 0 Der Grund dafür ist, dass durch die Definition der Unabhängigkeit der Gew. E (w k w j) 0 für jedes k j Da ferner wt den Mittelwert 0, E (w j w j) E (w j 2) w 2 hat. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um das oben angegebene ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als ein unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so dass die AR-Koeffizienten zu 0 konvergieren, wenn wir uns unendlich zurück in der Zeit bewegen. Nun zeigen Sie die Invertierbarkeit für das Modell MA (1). Dann ersetzen wir die Beziehung (2) für w t-1 in Gleichung (1) (3) (zt wt theta1 (z - θaw) wt theta1z - θ2w) Zur Zeit t-2. Gleichung (2) wird wir dann die Beziehung (4) für wt-2 in Gleichung (3) (zt wt theta1z-tha21w wt theta1z - tha21 (z-tha1w) wt theta1z - θ12z theta31w) Wenn wir fortfahren würden ( Unendlich), würden wir die unendliche Ordnung AR-Modell erhalten (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z multiplizieren, in der Größe zunehmen wird (unendlich), wenn wir uns zurück bewegen Zeit. Um dies zu verhindern, brauchen wir 1 lt1. Dies ist die Voraussetzung für ein invertierbares MA (1) Modell. Infinite Order MA Modell In Woche 3 sehen wir, dass ein AR (1) Modell in eine unendliche Reihenfolge umgewandelt werden kann MA Modell: (xt-mu wt phi1w phi21w punkte phik1 w Punkte Summe phij1w) Diese Summierung von vergangenen weißen Rauschen ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Voraussetzung für eine stationäre AR (1) ist, dass 1 lt1. Lets berechnen die Var (x t) mit der Kausaldarstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Reihen, die (Phi1lt1) ansonsten die Reihe divergiert. NavigationWas ist ein gleitender Durchschnitt Der erste gleitende Durchschnitt ist 4310, was der Wert der ersten Beobachtung ist. (In der Zeitreihenanalyse wird die erste Zahl in der gleitenden Durchschnittsreihe nicht berechnet, es ist ein fehlender Wert.) Der nächste gleitende Durchschnitt ist der Durchschnitt der ersten beiden Beobachtungen (4310 4400) 2 4355. Der dritte gleitende Durchschnitt ist der Durchschnitt der Beobachtung 2 und 3, (4400 4000) 2 4200, und so weiter. Wenn du einen gleitenden Durchschnitt von Länge 3 verwenden willst, werden anstelle von zwei drei Werte gemittelt. Copyright 2016 Minitab Inc. Alle Rechte vorbehalten. Durch die Nutzung dieser Website erklären Sie sich mit der Verwendung von Cookies für Analytics und personalisierte Inhalte einverstanden. Lesen Sie unsere Politik

No comments:

Post a Comment