Tuesday 7 November 2017

Moving Average And Exponential Glättung Modelle


Vorhersage durch Glättung Techniken Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Anwendungsbereichen im MENU-Bereich auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die rechtzeitig geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Aufhebung der Wirkung durch zufällige Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken zeigen, wenn sie richtig angewendet werden, deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge ein, beginnend von der linken oberen Ecke und den Parameter (s), und klicken Sie dann auf die Schaltfläche Berechnen, um eine Vorhersage zu erhalten. Blank Boxen sind nicht in den Berechnungen enthalten, aber Nullen sind. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Datenmatrix zu wechseln, benutzen Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Prüfung ihres Graphen aufgedeckt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Bedingungsprognosemodellierung. Moving Averages: Moving Averages gehören zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentielle Glättung: Dies ist ein sehr beliebtes Schema, um eine geglättete Zeitreihe zu produzieren. Während bei fortlaufenden Mitteln die bisherigen Beobachtungen gleich gewichtet werden, weist Exponentialglättung exponentiell abnehmende Gewichte zu, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen werden bei der Prognose relativ viel mehr gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser bei der Handhabung von Trends. Triple Exponential Glättung ist besser bei der Behandlung von Parabel Trends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante a. Entspricht etwa einem einfachen gleitenden Mittelwert der Länge (d. H. Periode) n, wobei a und n verwandt sind durch: a 2 (n1) OR n (2 - a) a. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19-tägigen gleitenden Durchschnitt entsprechen. Und ein 40-Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt entsprechen, wobei eine Glättungskonstante gleich 0,04878 ist. Holts Linear Exponential Glättung: Angenommen, die Zeitreihe ist nicht saisonal, aber zeigt Trend. Holts-Methode schätzt sowohl den aktuellen Level als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein besonderer Fall der exponentiellen Glättung ist, indem die Periode des gleitenden Durchschnitts auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft wirksam. Jedoch kann man eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten Mean Absolute Error (MA Error). Wie man mehrere Glättungsmethoden vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognose-Technik gibt, ist der am weitesten verbreitete Ansatz bei der Verwendung visueller Vergleich von mehreren Prognosen, um ihre Genauigkeit zu beurteilen und wählen Sie unter den verschiedenen Vorhersage Methoden. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognosemethoden (unter Verwendung von zB Excel) aufzeichnen, wodurch ein visueller Vergleich erleichtert wird. Sie können die vorherigen Prognosen durch Glättungstechniken JavaScript verwenden, um die vergangenen Prognosewerte zu erhalten, die auf Glättungstechniken basieren, die nur einen einzelnen Parameter verwenden. Holt - und Winters-Methoden verwenden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuche und Fehler für die Parameter auszuwählen. Die einzige exponentielle Glättung unterstreicht die kurzfristige Perspektive, die sie auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die eine kleinste Quadrate zu den historischen Daten passt (oder transformierte historische Daten), repräsentiert die lange Reichweite, die auf dem grundlegenden Trend bedingt ist. Holts lineare exponentielle Glättung erfasst Informationen über den letzten Trend. Die Parameter in Holts-Modell sind Pegel-Parameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist und der Trends-Parameter erhöht werden sollte, wenn die aktuelle Trendrichtung durch die kausalen Faktoren unterstützt wird. Kurzfristige Prognose: Beachten Sie, dass jedes JavaScript auf dieser Seite eine einstufige Prognose bietet. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert dem Ende der Zeitreihendaten hinzu und klicken Sie dann auf dieselbe Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. Mehr - und Exponential-Glättungsmodelle Als erster Schritt zur Verbesserung der naiven Prognosemodelle können Nicht-Sektionsmuster und Trends mit einem gleitenden Durchschnitt oder Glättung extrapoliert werden Modell. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten (d. H. Lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und diesen als Prognose zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem zufälligen Wandermodell betrachtet werden. Der gleitende Durchschnitt wird oft als geglättete Version der Originalreihe bezeichnet, da kurzfristige Mittelung die Wirkung hat, die Beulen in der Originalreihe zu glätten. Durch die Anpassung des Grades der Glättung (d. h. die Breite des gleitenden Durchschnitts), können wir hoffen, eine Art optimales Gleichgewicht zwischen der Leistung der mittleren und zufälligen Wandermodelle zu treffen. Die einfachste Art von Mittelungsmodell ist die. Einfacher (gleichgewichteter) Moving Average: Hier ist die Einmal-Prognose Yacute (t), die zum Zeitpunkt t-1 gemacht wurde, gleich dem einfachen Durchschnitt der letzten k-Beobachtungen. Dieser Mittelwert wird in der Periode t (k1) 2 zentriert, was impliziert, dass die Schätzung des lokalen Mittels dazu neigt, hinter dem wahren Wert des lokalen Mittels um etwa (k1) 2 Perioden zurückzukehren. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (k1) 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird: Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen . Zum Beispiel, wenn Sie durchschnittlich die letzten 5 Werte sind, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte. Beachten Sie, dass, wenn k1, die einfache gleitende Durchschnitt (SMA) - Modell entspricht dem zufälligen Walk-Modell (ohne Wachstum). Wenn k sehr groß ist (vergleichbar mit der Länge der Schätzperiode), entspricht das SMA-Modell dem Mittelmodell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k einzustellen, um die beste Anpassung an die Daten zu erhalten, d. h. die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel für eine Reihe, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst können wir versuchen, es mit einem zufälligen Walk-Modell zu passen, was einem einfachen gleitenden Durchschnitt von 1 Term entspricht: Das zufällige Walk-Modell reagiert sehr schnell auf Änderungen in der Serie, aber dabei macht es viel von dem Lärm in der Daten (die zufälligen Schwankungen) sowie das Signal (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen ausprobieren, erhalten wir einen glatteren Prognosen: Der 5-fach einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Spaziergangmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zurückzukehren. (Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie im zufälligen Spaziergang Modell. So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während die Prognosen aus dem zufälligen Wandermodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Durchschnitt der letzten Werte. Interessanterweise werden die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Konfidenzgrenzen nicht immer größer, wenn der Prognosehorizont zunimmt. Das ist offensichtlich nicht richtig Leider gibt es keine zugrundeliegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Wenn Sie dieses Modell in der Praxis nutzen würden, wäre es Ihnen ratsam, eine empirische Schätzung der Vertrauensgrenzen für die längerfristigen Prognosen zu verwenden. Zum Beispiel könnten Sie eine Kalkulationstabelle einrichten, in der das SMA-Modell zur Vorhersage von 2 Schritten voraus, 3 Schritten voraus, etc. im historischen Datenmuster verwendet werden würde. Sie können dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addition und Subtraktion von Vielfachen der entsprechenden Standardabweichung aufbauen. Wenn wir einen 9-fach einfachen gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt nun 5 Perioden ((91) 2). Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10: Beachten Sie, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Browns Einfache exponentielle Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen völlig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise abgezinst werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die 2. jüngste, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. jüngsten bekommen, und bald. Das einfache exponentielle Glättungsmodell (SES) erreicht dies. Es sei eine Glättungskonstante (eine Zahl zwischen 0 und 1) und sei S (t) den Wert der geglätteten Reihe in der Periode t. Die folgende Formel wird rekursiv verwendet, um die geglättete Serie zu aktualisieren, da neue Beobachtungen aufgezeichnet werden: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wo die Nähe des interpolierten Wertes auf die aktuellste Beobachtung steuert. Die Prognose für die nächste Periode ist einfach der aktuell geglättete Wert: (Anmerkung: Wir werden das Symbol Yacute fortfahren, um für eine Prognose der Zeitreihe Y zu stehen, denn Yacute ist die nächste Sache zu einem y-Hut, der angezeigt werden kann Eine Web-Seite.) Äquivalent können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und vorherige Beobachtungen ausdrücken, auf eine der folgenden Weisen: Yacute (t1) Y (t) (1-) Yacute (t). Prognoseinterpolation zwischen vorheriger Prognose und vorheriger Beobachtung Yacute (t1) Yacute (t) e (t). Vorhersage der Vorhersage plus Fraktion des vorherigen Fehlers, wobei e (t) Y (t) - Y (t) Yacute (t1) Y (t) - (1-) e (t) ist. (T-1) ((1-) 2) Y (t-2) ((1-) 3) Y (t) -3) . . Prognose exponentiell gewichteter (d. h. diskontierter) gleitender Durchschnitt mit Diskontfaktor 1- Die vorangehenden vier Gleichungen sind alle mathematisch gleichwertig - einer von ihnen kann durch Umlagerung eines der anderen erhalten werden. Die erste Gleichung oben ist wahrscheinlich am einfachsten zu bedienen, wenn Sie das Modell auf einer Tabellenkalkulation implementieren: Die Prognoseformel passt in eine einzelne Zelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle hinweisen, wo der Wert von ist gelagert. Beachten Sie, dass, wenn 1, das SES-Modell einem zufälligen Walk-Modell entspricht (ohne Wachstum). Wenn 0, ist das SES-Modell äquivalent zum mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem Mittelwert gesetzt wird. Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose beträgt 1 relativ zu dem Zeitraum, für den die Prognose berechnet wird. (Das soll nicht offensichtlich sein, aber es lässt sich leicht durch die Auswertung einer unendlichen Reihe zeigen.) Die einfache gleitende Durchschnittsprognose neigt daher dazu, hinter den Wendepunkten um etwa 1 Perioden zurückzukehren. Zum Beispiel, wenn 0,5 die Verzögerung 2 Perioden beträgt, wenn 0,2 die Verzögerung 5 Perioden beträgt, wenn 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Verzögerung) ist die Prognose der einfachen exponentiellen Glättung (SES) der einfachen gleitenden Durchschnitts - (SMA) - Prognose etwas überlegen, da sie die jüngste Beobachtung - Es ist etwas besser auf Veränderungen in der jüngsten Vergangenheit. Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der kontinuierlich variabel ist, so dass er leicht durch die Verwendung eines Solver-Algorithmus optimiert werden kann, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert des SES-Modells für diese Baureihe ergibt sich auf 0,2961, wie hier gezeigt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 10.2961 3.4 Perioden, was dem eines 6-fach einfach gleitenden Durchschnitts entspricht. Die Langzeitprognosen des SES-Modells sind eine horizontale Gerade. Wie im SMA-Modell und dem zufälligen Walk-Modell ohne Wachstum. Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das zufällige Spaziergangmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das zufällige Walk-Modell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells, so dass die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für das SES-Modell bietet. Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA (1) Term und keinem konstanten Term. Sonst bekannt als ARIMA (0,1,1) Modell ohne Konstante. Der MA (1) - Koeffizient im ARIMA-Modell entspricht der Menge 1 im SES-Modell. Zum Beispiel, wenn man ein ARIMA (0,1,1) Modell ohne Konstante an die hier analysierte Serie passt, ergibt sich der geschätzte MA (1) Koeffizient 0,7029, was fast genau ein minus 0.2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Um dies in Statgraphics zu tun, geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA (1) Begriff mit einer Konstante, d. h. ein ARIMA (0,1,1) Modell mit konstant. Die langfristigen Prognosen werden dann einen Trend haben, der dem durchschnittlichen Trend entspricht, der über den gesamten Schätzungszeitraum beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA eingestellt ist. Allerdings können Sie einen konstanten langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell (mit oder ohne saisonale Anpassung) hinzufügen, indem Sie die Inflationsanpassungsoption im Vorhersageverfahren verwenden. Die entsprechende Inflation (prozentuale Wachstumsrate) pro Periode kann als der Steigungskoeffizient in einem linearen Trendmodell geschätzt werden, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder sie kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren . Browns Lineare (d. h. doppelte) Exponentielle Glättung Wenn sowohl der Trend als auch der Mittelwert im Laufe der Zeit langsam variiert, ist ein übergeordnetes Glättungsmodell erforderlich, um den unterschiedlichen Trend zu verfolgen. Das einfachste zeitveränderliche Trendmodell ist das Browns lineare exponentielle Glättungsmodell (LES), das zwei verschiedene geglättete Serien verwendet, die zu unterschiedlichen Zeitpunkten zentriert sind. Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren. (Alternativ kann eine doppelte Anwendung der einfachen gleitenden Mittelmethode verwendet werden, um zeitvariable Trends zu verfolgen - siehe Seiten 154-158 in deinem Lehrbuch.) Die algebraische Form des linearen exponentiellen Glättungsmodells, wie das der einfachen exponentiellen Glättung Modell, kann in einer Reihe von verschiedenen, aber gleichwertigen Formen ausgedrückt werden. Die Standardform dieses Modells wird gewöhnlich wie folgt ausgedrückt: Sei S die einfach geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung auf die Reihe Y erhalten wird. Das heißt, der Wert von S in der Periode t ist gegeben durch: (Erinnern Sie sich, dass unter einfachem Exponentielle Glättung, so würden wir einfach Yacute (t1) S (t) an dieser Stelle zulassen.) Dann sei S die doppelt geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung (unter Verwendung derselben) der Reihe S erhalten wird: Schließlich wird die Prognose Yacute ( T1) ist gegeben durch: a (t) 2S (t) - S (t). Der geschätzte Pegel in der Periode t Prognosen mit längeren Durchlaufzeiten, die in der Periode t vorgenommen wurden, werden durch Hinzufügen von Vielfachen des Trendterms erhalten. Zum Beispiel wäre die Prognose für k-Periodenvorhersage (d. h. die Prognose für Y (tk), die in der Periode t gemacht wurde, gleich a (t) kb (t). Für die Zwecke der Modellierung (dh Berechnung von Prognosen, Restmengen und Reststatistiken über die Schätzperiode) kann das Modell durch S (S) S (1) S (1) Y (1) gestartet werden, dh beide geglättete Serien gleich setzen Der beobachtete Wert bei t1. Eine mathematisch äquivalente Form des Browns-linearen exponentiellen Glättungsmodells, das seinen nicht-stationären Charakter hervorhebt und auf einer Tabellenkalkulation einfacher zu implementieren ist, ist folgendes: Mit anderen Worten, die vorhergesagte Differenz in der Periode t (nämlich Yacute (t) - Y ( T-1)) gleich der vorherigen beobachteten Differenz (nämlich Y (t-1) - Y (t-2)) minus einer gewichteten Differenz der beiden vorherigen Prognosefehler. Achtung: Diese Form des Modells ist eher knifflig, um zu Beginn der Schätzperiode zu beginnen. Die folgende Konvention wird empfohlen: Erster Satz Yacute (1) Y (1), der e (1) 0 ergibt (dh ein wenig betrügen und die erste Prognose gleich der tatsächlichen ersten Beobachtung haben), dann auch Yacute (2) Y setzen (1), die e (2) Y (2) - Y (1) ergibt, dann von diesem Punkt aus mit der obigen Gleichung fortfahren. Dies würde die gleichen angepassten Werte wie die auf S und S basierende Formel ergeben, wenn diese mit S (1) S (1) Y (1) gestartet wurden. Wieder einmal können Sie Ihre Tabellenkalkulation der Solver oder einen nichtlinearen Kleinste Quadrate Algorithmus verwenden, um den Wert von zu optimieren. Der optimale Wert des LES-Modells, das von Statgraphics an diese Serie angepasst ist, beträgt 0.1607. Beachten Sie, dass die Langzeitprognosen des LES-Modells für diese Zeitreihe den in den letzten 10 Perioden beobachteten lokalen Trend verfolgen. Auch die Vertrauensintervalle für das LES-Modell wachsen schneller als die des SES-Modells. Was ist am besten für diese besondere Zeitreihe Hier ist ein Modellvergleichsbericht für die oben beschriebenen Modelle. Es scheint, dass das SES-Modell besser funktioniert als die SMA-Modelle, und das LES-Modell ist dicht hinterher. Ob Sie SES oder LES in diesem Fall wählen würde davon abhängen, ob Sie wirklich glauben, dass die Serie einen lokalen Trend hat. Browns quadratisches (d. h. dreifaches) Glättungsmodell. Verwendet drei geglättete Reihen, die zu verschiedenen Zeitpunkten zentriert sind, und extrapoliert eine Parabel durch die drei Zentren. Dies wird in der Praxis nur selten angewendet, obwohl echte quadratische Trends selten sind und das Modell sehr instabil ist. Welche Art von Trend-Extrapolation ist am besten: horizontale, lineare oder quadratische empirische Evidenz deutet darauf hin, dass, wenn die Daten bereits angepasst wurden (falls erforderlich) für die Inflation, dann kann es unvorstellbar sein, kurzfristige lineare (oder schlechtere, quadratische) zu extrapolieren ) Trends sehr weit in die Zukunft. Trends, die heute deutlich werden, können in Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, erhöhter Konkurrenz und zyklischer Abschwünge oder Aufschwünge in einer Branche nachlassen. Aus diesem Grund führt die einfache exponentielle Glättung oftmals eine bessere Out-of-Sample aus, als es sonst zu erwarten wäre, trotz der naiven horizontalen Trend-Extrapolation. Gedämpfte Trendmodifikationen des linearen exponentiellen Glättungsmodells werden oft in der Praxis verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen - das sind leider nicht in Statgraphics verfügbar. Grundsätzlich ist es möglich, Konfidenzintervalle um Langzeitprognosen zu ermitteln, die durch exponentielle Glättungsmodelle erzeugt werden, indem sie sie als Sonderfälle von ARIMA-Modellen betrachten. (Achtung: Nicht alle Software tut dies richtig. Insbesondere eine Reihe von populären automatischen Prognoseprogrammen verwenden sehr verdächtige Methoden zur Berechnung von Konfidenzintervallen für exponentielle Glättungsprognosen.) Die Breite der Konfidenzintervalle hängt von (i) dem RMS - Fehler der Modell, (ii) der Wert von (iii) der Glättungsgrad (Einzel-, Doppel - oder Dreifach) und (iv) die Anzahl der voraussichtlichen Perioden, die Sie prognostizieren. Im Allgemeinen breiten sich die Intervalle schneller aus, wenn es größer wird und oder wie die Glättungsreihe von Einzel - auf Doppel zu Dreifach zunimmt. Wir werden dieses Thema noch einmal besprechen, wenn wir ARIMA-Modelle später im Kurs besprechen. Die Bearbeitungsdaten entfernen zufällige Variation und zeigen Trends und zyklische Komponenten Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form von zufälligen Variation. Es gibt Methoden zur Verringerung der Aufhebung der Wirkung durch zufällige Variation. Eine häufig verwendete Technik in der Industrie ist Glättung. Diese Technik, wenn sie richtig angewendet wird, zeigt deutlich die zugrunde liegenden Tendenz, saisonale und zyklische Komponenten. Es gibt zwei verschiedene Gruppen von Glättungsmethoden Mittelungsmethoden Exponentielle Glättungsmethoden Mit den Mittelwerten ist der einfachste Weg, um Daten zu glätten. Wir werden zunächst einige Mittelungsmethoden untersuchen, wie zB den einfachen Durchschnitt aller vergangenen Daten. Ein Manager eines Lagers will wissen, wie viel ein typischer Lieferant in 1000 Dollar Einheiten liefert. Heshe nimmt eine Stichprobe von 12 Lieferanten, zufällig, erhalten die folgenden Ergebnisse: Die berechneten Mittelwert oder Durchschnitt der Daten 10. Der Manager beschließt, dies als die Schätzung für den Aufwand eines typischen Lieferanten zu verwenden. Ist das eine gute oder schlechte Schätzung Mittlerer quadratischer Fehler ist ein Weg, um zu beurteilen, wie gut ein Modell ist. Wir werden den mittleren quadratischen Fehler berechnen. Der fehlerhafte Betrag verbrachte abzüglich des geschätzten Betrags. Der Fehler quadriert ist der Fehler oben, quadriert. Die SSE ist die Summe der quadratischen Fehler. Die MSE ist der Mittelwert der quadratischen Fehler. MSE Ergebnisse zum Beispiel Die Ergebnisse sind: Fehler und quadratische Fehler Die Schätzung 10 Die Frage stellt sich: Können wir das Mittel, um Einkommen zu prognostizieren, wenn wir einen Trend vermuten Ein Blick auf die Grafik unten zeigt deutlich, dass wir dies nicht tun sollten. Durchschnittlich wiegt alle vergangenen Beobachtungen gleich Zusammenfassend heißt es, dass der einfache Durchschnitt oder Mittel aller vergangenen Beobachtungen nur eine nützliche Schätzung für die Prognose ist, wenn es keine Trends gibt. Wenn es Trends gibt, verwenden Sie unterschiedliche Schätzungen, die den Trend berücksichtigen. Der Durchschnitt wiegt alle vergangenen Beobachtungen gleichermaßen. Zum Beispiel ist der Mittelwert der Werte 3, 4, 5 gleich 4. Wir wissen natürlich, daß ein Mittelwert durch Addition aller Werte berechnet und die Summe durch die Anzahl der Werte dividiert wird. Eine weitere Möglichkeit, den Mittelwert zu berechnen, besteht darin, jeden Wert durch die Anzahl der Werte zu addieren, oder 33 43 53 1 1.3333 1.6667 4. Der Multiplikator 13 heißt das Gewicht. Im Allgemeinen: bar frac sum links (frac rechts) x1 links (frac rechts) x2,. , Links (frac rechts) xn. Die (links (frac rechts)) sind die Gewichte und natürlich summieren sie sich auf 1.Moving durchschnittliche und exponentielle Glättung Modelle Als ein erster Schritt in Bewegung über mittlere Modelle, zufällige Wandermodelle und lineare Trend-Modelle, Nicht-Season-Muster und Trends Kann mit einem gleitenden Durchschnitt oder Glättungsmodell extrapoliert werden. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist. Daher nehmen wir einen bewegten (lokalen) Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem random-walk-without-drift-Modell betrachtet werden. Die gleiche Strategie kann verwendet werden, um einen lokalen Trend abzuschätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als quotsmoothedquot Version der ursprünglichen Serie, weil kurzfristige Mittelung hat die Wirkung der Glättung der Beulen in der ursprünglichen Serie. Durch die Anpassung des Grades der Glättung (die Breite des gleitenden Durchschnitts), können wir hoffen, eine Art von optimalem Gleichgewicht zwischen der Leistung der mittleren und zufälligen Wandermodelle zu schlagen. Die einfachste Art von Mittelungsmodell ist die. Einfache (gleichgewichtete) Moving Average: Die Prognose für den Wert von Y zum Zeitpunkt t1, der zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen: (Hier und anderswo verwende ich das Symbol 8220Y-hat8221 zu stehen Für eine Prognose der Zeitreihe Y, die zum frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde.) Dieser Durchschnitt ist in der Periode t (m1) 2 zentriert, was impliziert, dass die Schätzung des lokalen Mittels dazu neigen wird, hinter dem wahren zu liegen Wert des lokalen Mittels um etwa (m1) 2 Perioden. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt (m1) 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird: Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen . Zum Beispiel, wenn Sie durchschnittlich die letzten 5 Werte sind, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte. Beachten Sie, dass, wenn m1, das einfache gleitende Durchschnitt (SMA) - Modell entspricht dem zufälligen Walk-Modell (ohne Wachstum). Wenn m sehr groß ist (vergleichbar mit der Länge der Schätzperiode), entspricht das SMA-Modell dem mittleren Modell. Wie bei jedem Parameter eines Prognosemodells ist es üblich, den Wert von k anzupassen, um die besten Quoten für die Daten zu erhalten, d. h. die kleinsten Prognosefehler im Durchschnitt. Hier ist ein Beispiel für eine Reihe, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst können wir versuchen, es mit einem zufälligen Spaziergang Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Begriff: Das zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von der Quotierung in der Daten (die zufälligen Schwankungen) sowie das quotsignalquot (das lokale Mittel). Wenn wir stattdessen einen einfachen gleitenden Durchschnitt von 5 Begriffen ausprobieren, erhalten wir einen glatteren Prognosen: Der 5-fach einfache gleitende Durchschnitt liefert in diesem Fall deutlich kleinere Fehler als das zufällige Spaziergangmodell. Das Durchschnittsalter der Daten in dieser Prognose beträgt 3 ((51) 2), so dass es dazu neigt, hinter den Wendepunkten um etwa drei Perioden zurückzukehren. (Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Perioden später.) Beachten Sie, dass die Langzeitprognosen des SMA-Modells eine horizontale Gerade sind, genau wie im zufälligen Spaziergang Modell. So geht das SMA-Modell davon aus, dass es keinen Trend in den Daten gibt. Während die Prognosen aus dem zufälligen Wandermodell einfach dem letzten beobachteten Wert entsprechen, sind die Prognosen des SMA-Modells gleich einem gewichteten Durchschnitt der letzten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Vertrauensgrenzen werden nicht weiter erhöht, wenn der Prognosehorizont zunimmt. Das ist offensichtlich nicht richtig Leider gibt es keine zugrundeliegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Zum Beispiel könnten Sie eine Kalkulationstabelle einrichten, in der das SMA-Modell zur Vorhersage von 2 Schritten voraus, 3 Schritten voraus, etc. im historischen Datenmuster verwendet werden würde. Sie können dann die Stichproben-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Konfidenzintervalle für längerfristige Prognosen durch Addition und Subtraktion von Vielfachen der entsprechenden Standardabweichung aufbauen. Wenn wir einen 9-fach einfachen gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt: Das Durchschnittsalter beträgt nun 5 Perioden ((91) 2). Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10: Beachten Sie, dass die Prognosen in der Tat hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welche Menge an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die ihre Fehlerstatistik vergleicht, auch einen 3-Term-Durchschnitt: Modell C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um einen kleinen Marge über die 3 - term und 9-term Mittelwerte, und ihre anderen Statistiken sind fast identisch. So können wir bei Modellen mit sehr ähnlichen Fehlerstatistiken wählen, ob wir ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen bevorzugen würden. (Zurück zum Anfang der Seite) Browns Einfache Exponential-Glättung (exponentiell gewichteter gleitender Durchschnitt) Das oben beschriebene einfache gleitende Durchschnittsmodell hat die unerwünschte Eigenschaft, dass es die letzten k-Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen völlig ignoriert. Intuitiv sollten vergangene Daten in einer allmählicheren Weise abgezinst werden - zum Beispiel sollte die jüngste Beobachtung ein wenig mehr Gewicht als die 2. jüngste, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. jüngsten bekommen, und bald. Das einfache exponentielle Glättungsmodell (SES) erreicht dies. Sei 945 eine quotsmoothing constantquot (eine Zahl zwischen 0 und 1). Eine Möglichkeit, das Modell zu schreiben, besteht darin, eine Reihe L zu definieren, die den gegenwärtigen Pegel (d. h. den lokalen Mittelwert) der Reihe repräsentiert, wie er von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv aus seinem eigenen vorherigen Wert wie folgt berechnet: Somit ist der aktuelle geglättete Wert eine Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, wobei 945 die Nähe des interpolierten Wertes auf den letzten Wert steuert Überwachung. Die Prognose für die nächste Periode ist einfach der aktuell geglättete Wert: Gleichermaßen können wir die nächste Prognose direkt in Bezug auf vorherige Prognosen und frühere Beobachtungen in einer der folgenden gleichwertigen Versionen ausdrücken. In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung: In der zweiten Version wird die nächste Prognose erhalten, indem man die vorherige Prognose in Richtung des vorherigen Fehlers um einen Bruchteil 945 anpasst Zeit t. In der dritten Version ist die Prognose ein exponentiell gewichteter (dh diskontierter) gleitender Durchschnitt mit Rabattfaktor 1-945: Die Interpolationsversion der Prognoseformel ist am einfachsten zu bedienen, wenn man das Modell auf einer Tabellenkalkulation implementiert: Es passt in eine Einzelzelle und enthält Zellreferenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle hinweisen, in der der Wert von 945 gespeichert ist. Beachten Sie, dass bei 945 1 das SES-Modell einem zufälligen Walk-Modell entspricht (ohne Wachstum). Wenn 945 0 ist, entspricht das SES-Modell dem mittleren Modell, vorausgesetzt, dass der erste geglättete Wert gleich dem Mittelwert ist. (Zurück zum Anfang der Seite) Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose beträgt 1 945 gegenüber dem Zeitraum, für den die Prognose berechnet wird. (Das soll nicht offensichtlich sein, aber es kann leicht durch die Auswertung einer unendlichen Reihe gezeigt werden.) Die einfache gleitende Durchschnittsprognose neigt daher dazu, hinter den Wendepunkten um etwa 1 945 Perioden zurückzukehren. Zum Beispiel, wenn 945 0,5 die Verzögerung 2 Perioden beträgt, wenn 945 0,2 die Verzögerung 5 Perioden beträgt, wenn 945 0,1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter (d. H. Verzögerung) ist die Prognose der einfachen exponentiellen Glättung (SES) der einfachen gleitenden Durchschnitts - (SMA) - Prognose etwas überlegen, da sie die jüngste Beobachtung - Es ist etwas mehr auffallend auf Veränderungen, die in der jüngsten Vergangenheit auftreten. Zum Beispiel hat ein SMA-Modell mit 9 Begriffen und einem SES-Modell mit 945 0,2 beide ein Durchschnittsalter von 5 für die Daten in ihren Prognosen, aber das SES-Modell setzt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und am Gleichzeitig ist es genau 8220forget8221 über Werte mehr als 9 Perioden alt, wie in dieser Tabelle gezeigt: Ein weiterer wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er leicht optimiert werden kann Indem ein Quotsolverquot-Algorithmus verwendet wird, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert von 945 im SES-Modell für diese Baureihe ergibt sich auf 0,2961, wie hier gezeigt: Das Durchschnittsalter der Daten in dieser Prognose beträgt 10.2961 3.4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die Langzeitprognosen des SES-Modells sind eine horizontale Gerade. Wie im SMA-Modell und dem zufälligen Walk-Modell ohne Wachstum. Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle nun in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für das zufällige Spaziergangmodell. Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbar ist als das zufällige Spaziergangmodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells. So bietet die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für das SES-Modell. In particular, an SES model is an ARIMA model with one nonseasonal difference, an MA(1) term, and no constant term . otherwise known as an quotARIMA(0,1,1) model without constantquot. The MA(1) coefficient in the ARIMA model corresponds to the quantity 1- 945 in the SES model. For example, if you fit an ARIMA(0,1,1) model without constant to the series analyzed here, the estimated MA(1) coefficient turns out to be 0.7029, which is almost exactly one minus 0.2961. It is possible to add the assumption of a non-zero constant linear trend to an SES model. To do this, just specify an ARIMA model with one nonseasonal difference and an MA(1) term with a constant, i. e. an ARIMA(0,1,1) model with constant. The long-term forecasts will then have a trend which is equal to the average trend observed over the entire estimation period. You cannot do this in conjunction with seasonal adjustment, because the seasonal adjustment options are disabled when the model type is set to ARIMA. However, you can add a constant long-term exponential trend to a simple exponential smoothing model (with or without seasonal adjustment) by using the inflation adjustment option in the Forecasting procedure. The appropriate quotinflationquot (percentage growth) rate per period can be estimated as the slope coefficient in a linear trend model fitted to the data in conjunction with a natural logarithm transformation, or it can be based on other, independent information concerning long-term growth prospects. (Return to top of page.) Browns Linear (i. e. double) Exponential Smoothing The SMA models and SES models assume that there is no trend of any kind in the data (which is usually OK or at least not-too-bad for 1-step-ahead forecasts when the data is relatively noisy), and they can be modified to incorporate a constant linear trend as shown above. What about short-term trends If a series displays a varying rate of growth or a cyclical pattern that stands out clearly against the noise, and if there is a need to forecast more than 1 period ahead, then estimation of a local trend might also be an issue. The simple exponential smoothing model can be generalized to obtain a linear exponential smoothing (LES) model that computes local estimates of both level and trend. The simplest time-varying trend model is Browns linear exponential smoothing model, which uses two different smoothed series that are centered at different points in time. The forecasting formula is based on an extrapolation of a line through the two centers. (A more sophisticated version of this model, Holt8217s, is discussed below.) The algebraic form of Brown8217s linear exponential smoothing model, like that of the simple exponential smoothing model, can be expressed in a number of different but equivalent forms. The quotstandardquot form of this model is usually expressed as follows: Let S denote the singly-smoothed series obtained by applying simple exponential smoothing to series Y. That is, the value of S at period t is given by: (Recall that, under simple exponential smoothing, this would be the forecast for Y at period t1.) Then let Squot denote the doubly-smoothed series obtained by applying simple exponential smoothing (using the same 945 ) to series S: Finally, the forecast for Y tk . for any kgt1, is given by: This yields e 1 0 (i. e. cheat a bit, and let the first forecast equal the actual first observation), and e 2 Y 2 8211 Y 1 . after which forecasts are generated using the equation above. This yields the same fitted values as the formula based on S and S if the latter were started up using S 1 S 1 Y 1 . This version of the model is used on the next page that illustrates a combination of exponential smoothing with seasonal adjustment. Holt8217s Linear Exponential Smoothing Brown8217s LES model computes local estimates of level and trend by smoothing the recent data, but the fact that it does so with a single smoothing parameter places a constraint on the data patterns that it is able to fit: the level and trend are not allowed to vary at independent rates. Holt8217s LES model addresses this issue by including two smoothing constants, one for the level and one for the trend. At any time t, as in Brown8217s model, the there is an estimate L t of the local level and an estimate T t of the local trend. Here they are computed recursively from the value of Y observed at time t and the previous estimates of the level and trend by two equations that apply exponential smoothing to them separately. If the estimated level and trend at time t-1 are L t82091 and T t-1 . respectively, then the forecast for Y tshy that would have been made at time t-1 is equal to L t-1 T t-1 . When the actual value is observed, the updated estimate of the level is computed recursively by interpolating between Y tshy and its forecast, L t-1 T t-1, using weights of 945 and 1- 945. The change in the estimated level, namely L t 8209 L t82091 . can be interpreted as a noisy measurement of the trend at time t. The updated estimate of the trend is then computed recursively by interpolating between L t 8209 L t82091 and the previous estimate of the trend, T t-1 . using weights of 946 and 1-946: The interpretation of the trend-smoothing constant 946 is analogous to that of the level-smoothing constant 945. Models with small values of 946 assume that the trend changes only very slowly over time, while models with larger 946 assume that it is changing more rapidly. A model with a large 946 believes that the distant future is very uncertain, because errors in trend-estimation become quite important when forecasting more than one period ahead. (Return to top of page.) The smoothing constants 945 and 946 can be estimated in the usual way by minimizing the mean squared error of the 1-step-ahead forecasts. When this done in Statgraphics, the estimates turn out to be 945 0.3048 and 946 0.008 . The very small value of 946 means that the model assumes very little change in the trend from one period to the next, so basically this model is trying to estimate a long-term trend. By analogy with the notion of the average age of the data that is used in estimating the local level of the series, the average age of the data that is used in estimating the local trend is proportional to 1 946, although not exactly equal to it. In this case that turns out to be 10.006 125. This isn8217t a very precise number inasmuch as the accuracy of the estimate of 946 isn8217t really 3 decimal places, but it is of the same general order of magnitude as the sample size of 100, so this model is averaging over quite a lot of history in estimating the trend. The forecast plot below shows that the LES model estimates a slightly larger local trend at the end of the series than the constant trend estimated in the SEStrend model. Also, the estimated value of 945 is almost identical to the one obtained by fitting the SES model with or without trend, so this is almost the same model. Now, do these look like reasonable forecasts for a model that is supposed to be estimating a local trend If you 8220eyeball8221 this plot, it looks as though the local trend has turned downward at the end of the series What has happened The parameters of this model have been estimated by minimizing the squared error of 1-step-ahead forecasts, not longer-term forecasts, in which case the trend doesn8217t make a lot of difference. If all you are looking at are 1-step-ahead errors, you are not seeing the bigger picture of trends over (say) 10 or 20 periods. In order to get this model more in tune with our eyeball extrapolation of the data, we can manually adjust the trend-smoothing constant so that it uses a shorter baseline for trend estimation. For example, if we choose to set 946 0.1, then the average age of the data used in estimating the local trend is 10 periods, which means that we are averaging the trend over that last 20 periods or so. Here8217s what the forecast plot looks like if we set 946 0.1 while keeping 945 0.3. This looks intuitively reasonable for this series, although it is probably dangerous to extrapolate this trend any more than 10 periods in the future. What about the error stats Here is a model comparison for the two models shown above as well as three SES models. The optimal value of 945.for the SES model is approximately 0.3, but similar results (with slightly more or less responsiveness, respectively) are obtained with 0.5 and 0.2. (A) Holts linear exp. smoothing with alpha 0.3048 and beta 0.008 (B) Holts linear exp. smoothing with alpha 0.3 and beta 0.1 (C) Simple exponential smoothing with alpha 0.5 (D) Simple exponential smoothing with alpha 0.3 (E) Simple exponential smoothing with alpha 0.2 Their stats are nearly identical, so we really can8217t make the choice on the basis of 1-step-ahead forecast errors within the data sample. We have to fall back on other considerations. If we strongly believe that it makes sense to base the current trend estimate on what has happened over the last 20 periods or so, we can make a case for the LES model with 945 0.3 and 946 0.1. If we want to be agnostic about whether there is a local trend, then one of the SES models might be easier to explain and would also give more middle-of-the-road forecasts for the next 5 or 10 periods. (Return to top of page.) Which type of trend-extrapolation is best: horizontal or linear Empirical evidence suggests that, if the data have already been adjusted (if necessary) for inflation, then it may be imprudent to extrapolate short-term linear trends very far into the future. Trends evident today may slacken in the future due to varied causes such as product obsolescence, increased competition, and cyclical downturns or upturns in an industry. For this reason, simple exponential smoothing often performs better out-of-sample than might otherwise be expected, despite its quotnaivequot horizontal trend extrapolation. Damped trend modifications of the linear exponential smoothing model are also often used in practice to introduce a note of conservatism into its trend projections. The damped-trend LES model can be implemented as a special case of an ARIMA model, in particular, an ARIMA(1,1,2) model. It is possible to calculate confidence intervals around long-term forecasts produced by exponential smoothing models, by considering them as special cases of ARIMA models. (Beware: not all software calculates confidence intervals for these models correctly.) The width of the confidence intervals depends on (i) the RMS error of the model, (ii) the type of smoothing (simple or linear) (iii) the value(s) of the smoothing constant(s) and (iv) the number of periods ahead you are forecasting. In general, the intervals spread out faster as 945 gets larger in the SES model and they spread out much faster when linear rather than simple smoothing is used. This topic is discussed further in the ARIMA models section of the notes. (Return to top of page.)

No comments:

Post a Comment